Mixtures of regression models for time course gene expression data: evaluation of initialization and random effects

نویسندگان

  • Theresa Scharl
  • Bettina Grün
  • Friedrich Leisch
چکیده

SUMMARY Finite mixture models are routinely applied to time course microarray data. Due to the complexity and size of this type of data, the choice of good starting values plays an important role. So far initialization strategies have only been investigated for data from a mixture of multivariate normal distributions. In this work several initialization procedures are evaluated for mixtures of regression models with and without random effects in an extensive simulation study on different artificial datasets. Finally, these procedures are also applied to a real dataset from Escherichia coli. AVAILABILITY The latest release versions of R packages flexmix, gcExplorer and kernlab are always available from CRAN (http://cran.r-project.org/). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Gene Expression Programming and Support Vector Regression models to Modeling and Prediction Monthly precipitation

Estimating and predicting precipitation and achieving its runoff play an important role to correct management and exploitation of basins, management of dams and reservoirs, minimizing the flood damages and droughts, and water resource management, so they are considered by hydrologists. The appropriate performance of intelligent models leads researchers to use them for predicting hydrological ph...

متن کامل

Forecasting copper price using gene expression programming

Forecasting the prices of metals is important in many aspects of economics. Metal prices are also vital variables in financial models for revenue evaluation, which forms the basis of an effective payment regime using resource policymakers. According to the severe changes of the metal prices in the recent years, the classic estimation methods cannot correctly estimate the volatility. In order to...

متن کامل

Evaluation of Osteopontin Gene Expression in Endometrium of Diabetic Rat Models Treated with Metformin and Pioglitazone

Objective Osteopontin (Opn) is one of the co-factors which participates in cell adhesion and invasion during implantation process. Increased incidence of spontaneous abortion is reported in diabetic women. Several reports have shown Opn gene expression changes in diabetic condition in several tissues. Therefore, this study was designed to evaluate the effects of diabetes on Opn gene expression ...

متن کامل

Spatial Varying Coefficient Regression Model For Relative Risk Factors of Esophageal Cancer Patients

In conventional methods for spatial survival data modeling, it is often assumed that the coefficients of explanatory variables in different regions have a constant effect on survival time. Usually, the spatial correlation of data through a random effect is also included in the model. But in many practical issues, the factors affecting survival time do not have the same effects in different regi...

متن کامل

Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2010